SCIENTIFIC PAPERS

Almost periodic solution of generalized Ginzburg-Landau equation

GUO Boling (郭柏灵) and YUAN Rong (元 荣)

Institute of Applied Physics and Computational Mathematics, Beijing 100088, China

Received December 7, 2000; revised December 28, 2000

Abstract One class of generalized Ginzburg-Landau equation is studied and the existence of almost periodic solution of the equation is proven when f(t, x) is an almost periodic function of time t.

Keywords: generalized Ginzburg-Landau equation, almost periodic solution, existence.

We consider the Ginzburg-Landau equation as follows:

$$u_{t} = \alpha_{0}u + \alpha_{1}u_{xx} + \alpha_{2} | u |^{2}u + \alpha_{3} | u |^{2}u_{x} + \alpha_{4}u^{2}\overline{u}_{x} + \alpha_{5} | u |^{4}u + f,$$

$$t > 0, x \in \mathbb{R}^{1},$$
(1)

where $\alpha_0 = a_0$ is a real number, $\alpha_j = a_j + ib_j$, a_j and b_j are real numbers, $j = 1, 2, \dots 5$. u(t, x) is a complex value function of t and x. The equation is supplemented with the space-periodicity boundary condition and zero average condition as follows:

$$\begin{cases} u(t,x+L) = u(t,x), \ \forall \ t \in \mathbb{R}^1, \ \forall \ x \in \mathbb{R}^1, \\ \int_{\Omega} u dx = 0, \end{cases}$$
 (2)

where L is a positive number and $\Omega = (0, L) \subset \mathbb{R}^1$. Let f(t, x) be an almost periodic function of t. Using the constructive method, we shall prove that Problem (1)-(2) has an almost periodic solution in time t. For the periodic solution of nonlinear evolution equations, see References [1,5,6]

In this paper, we have the following assumption:

Assumption 1. $a_1 > 0 > a_5$ and $-4a_1a_5 > (b_3 - b_4)^2$.

1 Definitions and notations

Let X be a Banach space with the norm $\|\cdot\|_X$. For simplicity, we denote $\|\cdot\|_{L^2(\Omega)}$ by $\|\cdot\|_{L^2(\Omega)}$

Definition 1 (abstract almost periodic function). Let u(t) be a measurable function with value in a Banach space X. We say u(t) is X-almost periodic if for any $\varepsilon > 0$ there exists a relatively dense set $E\{\varepsilon, u\} \subseteq \mathbb{R}\}^1$ such that

$$\operatorname{ess \, sup}_{t \in \mathbb{R}^{k}} \| u(t+\tau) - u(t) \|_{X} \leq z, \qquad \forall \, \tau \in E \{e,u\}.$$

Let

$$L_{per}^p = \{g \in L^p(\Omega), g(x) \text{ be an L-periodic function} \}$$

where the norm in L_{per}^p is defined just as in $L^p(\Omega)$;

$$H_{per}^k = \{g \in H^k(\Omega), g(x) \text{ be an } L\text{-periodic function}\},$$

where the norm in H_{per}^k is defined just as in $H^k(\Omega)$;

$$L_{AP}^{p}(X) = \{g : \mathbb{R}^{1} \rightarrow X, g(t) \in L^{p}(\mathbb{R}^{1}, X), \text{ and } g(t) \text{ is } X\text{-almost periodic}\}.$$

Let $<\cdot$, $\cdot>$ denote the duality relationship between H_{per}^{-1} and H_{per}^{1} . We define the linear operator $\mathscr{B}: H_{per}^{1} \to H_{per}^{-1}$ by the equation

$$\langle \mathscr{L}v, w \rangle = \int_{\mathcal{O}} (\alpha_1 \partial_x v \partial_x \bar{w} - \mu v \bar{w}) dx, \qquad \forall v, w \in H^1_{per}.$$

Let $\rho(\mathscr{A})$ denote the regular set of (\mathscr{A}) . We choose μ adequately such that $0 \in \rho \mathscr{A}$. Set

$$\mathscr{N}\phi = (a_0 - \mu)\phi + \alpha_2 |\phi|^2\phi + \alpha_3 |\phi|^2\phi_x + \alpha_4\phi^2\bar{\phi}_x + \alpha_5 |\phi|^4\phi, \ \forall \ \phi \in H^1_{per}.$$

Then $\mathcal N$ is locally Lipschitz continuous, i.e. $\forall \ v \ , w \in H^1_{per}, \ \exists \ C > 0$, such that

$$\| \mathcal{M}(v) - \mathcal{M}(w) \| \leq C \| v - w \|_{H^1},$$

where the Lipschitz constant C depends continuously on $\|v\|_{H^1}$ and $\|w\|_{H^1}$.

Assumption 2.
$$f(t,x) \in L_{AP}^{\infty}(L_{per}^2)$$
, and $f'_{t}(t,x) \in L_{AP}^{\infty}(H_{per}^{-1})$.

Let

$$M = \operatorname{ess sup} \| f(t, x) \|, \qquad N = \operatorname{ess sup} \| f'_{t}(t, x) \|_{H^{-1}}.$$

Using these notations, Problem (1)-(2) can be written formally in the form

$$u'(t) + \mathcal{A}u(t) = \mathcal{N}u(t) + f(t, \cdot), \text{ for any } t, u(t) \in H^1_{\text{rper}}.$$
 (3)

Definition 2 (strong solution). u(t,x) is said to be a strong solution of Problem (1)-(2) if the following conditions are satisfied:

(i)
$$u(t) \in L^2_{loc}(\mathbb{R}^1, H^1_{per})$$
,

(ii)
$$\mathscr{A}u(t) \in L^2_{loc}(\mathbb{R}^1, L^2_{per})$$
,

(iii)
$$u'(t) \in L^2_{loc}(\mathbb{R}^1, L^2_{per})$$
,

(iv)
$$u'(t,x) + \mathcal{A}u(t,x) = \mathcal{N}u(t,x) + f(t,x)$$
, a.e. on $\mathbb{R}^1 \times \Omega$.

The following inequalities will be used in the proofs later.

(i) Agmon's inequality:

$$||u||_{\infty} \le K_1(||u||^2 + ||u_x||^2)^{1/4} ||u||^{1/2},$$
 (4)

where K_1 is a constant depending only on L.

(ii) Gagliardo-Nirenberg inequality for L^p and H^k spaces:

$$\| u \|_{p} \leq K(p, k, L) \| u \|_{H^{1}}^{\theta_{1}} \| u \|_{q}^{1-\theta}, \frac{1}{p} = \theta \left(\frac{1}{2} - k\right) + (1 - \theta) \cdot \frac{1}{q}.$$

Specially, there exist positive constant numbers K_2 and K_3 depending only on L such that

$$\| u \|_{6}^{3} \leq K_{2}^{3}(\| u \|^{2} + \| \partial_{x}u \|^{2})^{1/2} \| u \|^{2}$$

$$\tag{5}$$

and

$$\| u \|_{10}^{5} \leq K_{3}^{5}(\| u \|^{2} + \| \partial_{x}u \|^{2}) \| u \|^{3}.$$
 (6)

(iii) Hölder's inequality:

$$\int_0^L |fg| dx \le ||f||_p ||g||_q$$

and Young's inequality

$$AB \leq A^p/p + B^q/q$$

where A and B are non-negative real numbers, 1 and <math>1/p + 1/q = 1. In Hölder's inequality, one may take p = 1, $q = \infty$.

(iv) For $k \ge 1$, we have

$$||u||_{\infty} \leq \sqrt{2} ||u||^{1/2} ||\partial_x u||^{1/2}, \qquad \forall u \in H_{per}^k, \int_{\Omega} u(x) dx = 0.$$

Especially, there exists a positive constant number K_4 depending only on L such that

$$\parallel u \parallel \leq K_{\Delta} \parallel \partial_{\nu} u \parallel . \tag{7}$$

2 A Priori estimates

In this and the next section, we shall construct a bounded solution of Problem (1)-(2) by Galerkin's method and give a priori estimates for this solution.

Let $\{\phi_j\}$ be the basis of H^1_{per} consisting of the eigenfunctions of \mathcal{A} , and consider the system of ordinary differential equations

$$(u'_{m,r}(t),\phi_j)+(\mathcal{A}u_{m,r}(t),\phi_j)=(\mathcal{N}\dot{u}_{m,r}(t),\phi_j)+(f,\phi_j),$$

$$j = 1, 2, \cdots m \tag{8}$$

with

$$u_{m,r}(-r) = 0, (9)$$

where $r \in \mathbb{R}^+$, $u_{m,r} = \sum_{j=1}^m \alpha_{m,r,j}(t) \phi_j$ and $\alpha_{m,r,j}(t) (j=1,2,\cdots m)$ are undetermined functions. Since $(f(t),\phi_j)$ is continuous in t and $(\mathcal{N}\hat{u}_{m,r}(t),\phi_j)$ is Lipschitz continuous in $(\alpha_{m,r,1},\alpha_{m,r,2},\cdots\alpha_{m,r,m})$, System (8)-(9) has a unique solution $(\alpha_{m,r,1},\alpha_{m,r,2},\cdots\alpha_{m,r,m})$, i.e. $u_{m,r}(t)$, on some interval $[-r,t_m]$. By the theory of ordinary differential equation, we can obtain global existence in $[-r,+\infty)$ when $\|u_{m,r}\|$ and $\|\partial_x u_{m,r}\|$ are uniformly bounded. Besides, a priori estimates in $\|u_{m,r}\|$, $\|\partial_x u_{m,r}\|$ and $\|u'_{m,r}\|$ can ensure that $\{u_{m,r}\}$ has a convergent subsequence and one can prove that the limit of the convergent subsequence of $\{u_{m,r}\}$ is the solution needed. Now, let us give a priori estimates in $\|u_{m,r}\|$ and $\|\partial_x u_{m,r}\|$.

Lemma 1. Under Assumptions 1 and 2, let a_1 be large enough to satisfy the inequality as follows:

$$a_1 > \frac{(b_3 - b_4)^2}{2 | a_5|}.$$

Then there exists a positive constant C_1 depending only on $\alpha_0, \alpha_2, \alpha_3, \alpha_4, \alpha_5, L$ and f such that

$$\|u_{m,r}\| \leq C_1, \quad \forall t \in [-r, +\infty).$$

Proof. Multiplying the jth equation of (8) by $\bar{\alpha}_{m,r,j}$, summing over j from 1 to m, and taking the real part on both sides of the result, we have

$$\begin{split} \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \parallel u_{m,r}(t) \parallel^2 &\leq a_0 \parallel u_{m,r}(t) \parallel^2 - a_1 \parallel \partial_x u_{m,r}(t) \parallel^2 + a_2 \int_{\Omega} \mid u_{m,r}(t) \mid^4 \mathrm{d}x \\ &+ a_5 \int_{\Omega} \mid u_{m,r}(t) \mid^6 \mathrm{d}x + \mathrm{Re} [((a_3 + a_4) - \mathrm{i}(b_3 - b_4)) \\ &\cdot \int_{\Omega} \mid u_{m,r}(t) \mid^2 u_{m,r}(t) \partial_x \bar{u}_{m,r}(t)] + \parallel f \parallel \cdot \parallel u_{m,r}(t) \parallel . \end{split}$$

By Ref. [2] and the assumption about a_1 , we can choose constants $A_1 = \sqrt{|a_5|}$ and $A_2 = \sqrt{\frac{(b_3 - b_4)^2}{|a_5|}}$ which satisfy $A_1^2 A_2^2 = (b_3 - b_4)^2$ such that

$$\alpha = 2a_1 - A_2^2 > 0$$
, $\beta = -(2a_5 + A_1^2) > 0$,

and the following inequality is true (see Inequality (29) in Ref. [2]):

$$\frac{\mathrm{d}}{\mathrm{d}t} \| u_{m,r}(t) \|^2 + \frac{1}{2} \| u_{m,r}(t) \|^2 \leq -\alpha \| \partial_x u_{m,r}(t) \|^2 - \frac{\beta}{6} \| u_{m,r}(t) \|_6^6$$

2

$$+ C'L + \frac{1}{2} \| f \|^2, \tag{10}$$

where $C' = 2^{7/2} |a_0|^{3/2}/(3^{3/2}\beta^{1/2}) + 2^7 |a_2|^3/(27\beta^2) + 2/(3\beta^{1/2})$. Let $C_1 = 2C'L + M^2$. By Gronwall inequality, we have

$$||u_{m,r}(t)||^2 \leq C_1, \quad \forall t \in [-r, +\infty).$$

This completes the proof of Lemma 1.

Lemma 2. Under Assumptions 1 and 2, let a_1 be large enough to satisfy the inequality as follows:

$$a_1 > \max \left\{ \sigma^*, \frac{(b_3 - b_4)^2}{2 + a_5 +} \right\},$$
 (11)

where $\sigma^* = \frac{|\alpha_2|}{2}C_1K_2^3 + (|\alpha_3| + |\alpha_4|)K_1^2C_1^2 + |\alpha_5|C_1^4K_3^5 + 2C_1$. Then there exists a positive constant C_2 depending only on $\alpha_0, \alpha_2, \alpha_3, \alpha_4, \alpha_5, L$, and f such that

$$\|\partial_x u_{m,r}(t)\| \leq C_2, \ \forall \ t \in [-r, +\infty).$$

Proof. Let λ_j be the eigenvalue of the operator \mathscr{M} and $\mathscr{M}\phi_j = \lambda_j\phi_j$, $j = 1, 2, 3, \cdots$. Multiplying the jth equation of (8) by $\bar{\lambda}_j$ and summing over j from 1 to m, then taking the real part on both sides of the result, we have

$$\frac{1}{2} \frac{d}{dt} \| \partial_{x} u_{m,r}(t) \|^{2} \leq -a_{1} \| \partial_{xx} u_{m,r}(t) \|^{2} + |\alpha_{0}| \| u_{m,r}(t) \| \cdot \| \partial_{xx} u_{m,r}(t) \| \\
+ |\alpha_{2}| \| u_{m,r}(t) \|_{6}^{3} \cdot \| \partial_{xx} u_{m,r}(t) \| + (|\alpha_{3}| \\
+ |\alpha_{4}|) \int_{\Omega} |u_{m,r}(t)| |\partial_{x} u_{m,r}(t) ||\partial_{xx} u_{m,r}(t) || \\
+ |\alpha_{5}| \| u_{m,r}(t) \|_{10}^{5} \cdot \| \partial_{xx} u_{m,r}(t) \| + \| f \| \cdot \| \partial_{xx} u_{m,r}(t) \| .$$
(12)

By (4) ~ (6) and the inequality $\|u_x\|^2 \le \|u\| \cdot \|u_{xx}\|$, we have the following inequalities:

$$-a_{1} \| \partial_{xx} u_{m,r}(t) \|^{2} \leq -a_{1} \cdot \frac{1}{C_{1}} \| \partial_{x} u_{m,r}(t) \|^{2} \cdot \| \partial_{xx} u_{m,r}(t) \|.$$
 (13)

$$| \alpha_{2} | \| u_{m,r}(t) \|_{6}^{3} \cdot \| \partial_{xx} u_{m,r}(t) \| \leq | \alpha_{2} | K_{2}^{3} C_{1}^{2} (C_{1}^{2} + \| \partial_{x} u_{m,r}(t) \|^{2})^{1/2} \| \partial_{xx} u_{m,r}(t) \|$$

$$\leq \frac{1}{2} | \alpha_{2} | K_{2}^{3} (C_{1}^{2} + C_{1}^{4}) \| \partial_{xx} u_{m,r}(t) \|$$

$$+ \frac{1}{2} | \alpha_{2} | K_{2}^{3} \| \partial_{x} u_{m,r}(t) \|^{2} \| \partial_{xx} u_{m,r}(t) \| .$$

$$(14)$$

$$(|\alpha_3|+|\alpha_4|)\int_{\Omega} |u_{m,r}(t)|^2 |\partial_x u_{m,r}(t)| |\partial_{xx} u_{m,r}(t)|$$

$$\leq (\mid \alpha_{3}\mid + \mid \alpha_{4}\mid) \parallel u_{m,r}(t) \parallel^{2}_{\infty} \cdot \parallel \partial_{x}u_{m,r}(t) \parallel \cdot \parallel \partial_{xx}u_{m,r}(t) \parallel \\
\leq (\mid \alpha_{3}\mid + \mid \alpha_{4}\mid) K_{1}^{2} C_{1}(C_{1}^{2} + \parallel \partial_{x}u_{m,r}(t) \parallel^{2})^{1/2} \cdot \parallel \partial_{x}u_{m,r}(t) \parallel \cdot \parallel \partial_{xx}u_{m,r}(t) \parallel \\
\leq (\mid \alpha_{3}\mid + \mid \alpha_{4}\mid) \frac{K_{1}^{2} C_{1}^{3}}{2} \parallel \partial_{xx}u_{m,r}(t) \parallel \\
+ (\mid \alpha_{3}\mid + \mid \alpha_{4}\mid) K_{1}^{2} C_{1} \parallel \partial_{x}u_{m,r}(t) \parallel^{2} \cdot \parallel \partial_{xx}u_{m,r}(t) \parallel , \\
+ \alpha_{5}\mid \parallel u_{m,r}(t) \parallel^{5}_{10} \cdot \parallel \partial_{xx}u_{m,r}(t) \parallel + \parallel f \parallel \cdot \parallel \partial_{xx}u_{m,r}(t) \parallel \\
\leq \mid \alpha_{5}\mid K_{3}^{5} C_{1}^{3} (C_{1}^{2} + \parallel \partial_{x}u_{m,r}(t) \parallel^{2}) \parallel \partial_{xx}u_{m,r}(t) \parallel \\
\leq \mid \alpha_{5}\mid K_{3}^{5} C_{1}^{5} \parallel \partial_{xx}u_{m,r}(t) \parallel + \mid \alpha_{5}\mid K_{3}^{5} C_{1}^{3} \parallel \partial_{x}u_{m,r}(t) \parallel^{2} \cdot \parallel \partial_{xx}u_{m,r}(t) \parallel . \tag{16}$$

Hence, Inequality (12) yields

$$\frac{1}{2} \frac{d}{dt} \| \partial_x u_{m,r}(t) \|^2 \leq \left\{ \left[M + |\alpha_0| C_1 + \frac{1}{2} |\alpha_2| K_2^3(C_1^2 + C_1^4) + (|\alpha_3| + |\alpha_4|) \frac{K_1^2 C_1^3}{2} \right] \right. \\
+ |\alpha_5| K_3^5 C_1^5 - \left[\alpha_1 \cdot \frac{1}{C_1} - \frac{1}{2} |\alpha_2| K_2^3 - (|\alpha_3| + |\alpha_4|) K_1^2 C_1 - |\alpha_5| K_3^5 C_1^3 \right] \| \partial_x u_{m,r}(t) \|^2 \right\} \cdot \| \partial_{xx} u_{m,r}(t) \|.$$

Taking

$$C_2 = \sqrt{M + |\alpha_0| C_1 + \frac{1}{2} |\alpha_2| K_2^3 (C_1^2 + C_1^4) + (|\alpha_3| + |\alpha_4|) K_1^2 C_1^3 + |\alpha_5| K_3^5 C_1^5},$$

we have

$$\|\partial_x u_{m,r}(t)\| \leq C_2, \forall t \in [-r, +\infty).$$

This completes the proof of Lemma 2.

Remark 1. Since C_1 is independent of a_1 , a_1 can be taken to satisfy Inequality (10). Set

$$\sigma_1 = \max \left\{ \sigma^*, \frac{(b_3 - b_4)^2}{2 \mid a_5 \mid} \right\}.$$

Lemma 3. Under Assumptions 1 and 2, let a_1 be large enough such that $a_1 > \sigma_1$. Then there exists a positive const ant C_3 depending only on α_0 , α_1 , α_2 , α_3 , α_4 , α_5 , L, and f such that

$$\int_{t}^{t+1} \|\partial_{xx} u_{m,r}(t)\| \leq C_3, \qquad \forall t \in [-r, +\infty).$$

Proof. Let λ_j be the eigenvalue of the operator \mathscr{M} and $\mathscr{M}\phi_j = \lambda_j\phi_j$, $j = 1, 2, 3, \cdots$. Multiplying the jth equation of (8) by $\bar{\lambda}_j$, summing over j from 1 to m, and taking the real part on both sides

of the result, we have

$$\frac{1}{2} \frac{d}{dt} \| \partial_{x} u_{m,r}(t) \|^{2} + a_{1} \| \partial_{xx}^{2} u_{m,r}(t) \|^{2}$$

$$= a_{0} \| \partial_{x} u_{m,r}(t) \|^{2} + \operatorname{Re} \left(\alpha_{2} \int_{\Omega} \left[u_{m,r}^{2}(t) (\partial_{x} \overline{u}_{m,r}(t))^{2} + 2 + u_{m,r} |^{2} (\partial_{x} u_{m,r})^{2} \right] \right)$$

$$- \operatorname{Re} \left(\alpha_{3} \int_{\Omega} | u_{m,r}(t) |^{2} \partial_{x} u_{m,r}(t) \partial_{xx} \overline{u}_{m,r}(t) \right)$$

$$+ \operatorname{Re} \left(\alpha_{4} \int_{\Omega} | \partial_{x} u_{m,r}(t) |^{2} u_{m,r}(t) \partial_{x} \overline{u}_{m,r}(t) \right) + 3 a_{5} \int_{\Omega} | u_{m,r}(t) |^{4} | \partial_{x} u_{m,r}(t) |^{2}$$

$$+ 2 \operatorname{Re} \left(\alpha_{5} \int_{\Omega} | u_{m,r}^{2}(t) | u_{m,r}^{2}(t) \partial_{x} \overline{u}_{m,r}^{2}(t) \right) + \operatorname{Re} (f, \partial_{xx} u_{m,r}(t)).$$

By Agmom's inequality, Gagliarde-Nirenberg inequality^[3], and Lemmas 1 and 2, we have the following inequalities:

$$|\operatorname{Re}(f, \partial_{xx}u_{m,r}(t))|$$

$$\leq \varepsilon \|\partial_{xx}u_{m,r}(t)\|^{2} + \frac{1}{4\varepsilon} \|f\|^{2}, \left|\operatorname{Re}\left(\alpha_{2}\int_{\Omega} \left[u_{m,r}^{2}(t)(\partial_{x}\overline{u}_{m,r}(t))^{2} + 2 + u_{m,r}\right]^{2}(\partial_{x}u_{m,r})^{2}\right]\right) \right|$$

$$\leq 3 + \alpha_{2} + \|u_{m,r}(t)\|^{2}_{\infty} \|\partial_{x}u_{m,r}(t)\|^{2} \leq 3 + \alpha_{2} + K_{1}^{2}C_{1}C_{2}^{2}(C_{1}^{2} + C_{2}^{2})^{\frac{1}{2}},$$

$$\left|-\operatorname{Re}\left(\alpha_{3}\int_{\Omega} + u_{m,r}(t) + u_{m,r}^{2}(t) + u$$

Similarly,

$$\left| 2\operatorname{Re} \left(\alpha_5 \int_{\Omega} |u_{m,r}(t)|^2 u_{m,r}^2(t) \partial_x \overline{u}_{m,r}^2(t) \right) \right| \leq 2 |\alpha_5| K_1^4 C_1^2 C_2^2 (C_1^2 + C_2^2).$$

Choosing ε small enough, there exists a positive constant D^* such that

$$\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \| \partial_{x} u_{m,r}(t) \|^{2} + \frac{a_{1}}{2} \| \partial_{xx} u_{m,r}(t) \|^{2} \leq D^{*},$$

where D^* depends only on α_0 , α_1 , α_2 , α_3 , α_4 , α_5 , L, and f. Letting

$$C_3 = \frac{2D^* + C_2^2}{a_1},$$

we have

$$\int_{t}^{t+1} \| \partial_{xx} u_{m,r}(t) \|^{2} \leq C_{3}, \ \forall \ t \in [-r, +\infty).$$

This completes the proof of Lemma 3.

Lemma 4. Under Assumptions 1 and 2, let a_1 be large enough such that

$$a_1 > \max\{\sigma_1, \sigma_2\}, \tag{17}$$

where

$$\sigma_{2} = \left(\mid \alpha_{3} \mid + \mid \alpha_{4} \mid \right) K_{1}^{2} K_{4}^{2} \left(1 + \frac{1}{K_{4}^{2}} \right) \left(C_{1}^{2} + C_{2}^{2} \right)$$

$$+ a_{0} K_{4}^{2} + 6 \mid \alpha_{2} \mid K_{4}^{2} C_{1} C_{2} + 20 \mid \alpha_{5} \mid K_{4}^{2} C_{1}^{2} C_{2}^{2} + 2 K_{4}^{2}.$$

Then there exists a positive constant C_4 depending only on α_0 , α_1 , α_2 , α_3 , α_4 , α_5 , L, and f such that

$$||u'_{m,r}(t)|| \leq C_4, \forall t \in [-r, +\infty).$$

Proof. From (8), we have

$$(u''_{m,r}(t),\phi_j) + (\mathcal{A}u'_{m,r}(t),\phi_j) = ([\mathcal{N}(u_{m,r}(t))]',\phi_j) + \langle f'_t,\phi_j \rangle, j = 1,2,\cdots m.$$
 (18)

Multiplying the jth equation of (18) by $\tilde{\alpha}'_{m,r,j}(t)$, summing over j from 1 to m, and taking the real part on both sides of the result, we have

$$\frac{1}{2} \frac{d}{dt} \| u'_{m,r}(t) \|^{2} \leq -a_{1} \| \partial_{x} u'_{m,r}(t) \|^{2} + a_{0} \| u'_{m,r}(t) \|^{2} + 3 \| \alpha_{2} \| \| u_{m,r}(t) \|^{2}_{\infty}$$

$$\cdot \| u'_{m,r}(t) \|^{2} + (\| \alpha_{3} \| + \| \alpha_{4} \|) \cdot \left[2 \int_{\Omega} \| u'_{m,r}(t) \|^{2} \| u_{m,r}(t) \| \| u'_{m,r}(t) \| \| \| \| u'_{m,r}(t) \| \| \| \| u'_{m,r}(t) \| \| u'_{m,r}(t) \| \| \| \| u'_{m,r}(t) \| u'_{m,r}(t) \| \| u'_{m,r}(t) \| \| u'_{m,r}(t) \| u'_$$

$$+ 5 \mid \alpha_5 \mid \| u_{m,r}(t) \|_{\infty}^4 \cdot \| u'_{m,r}(t) \|^2 + \| f \|_{H^{-1}} \cdot \| u'_{m,r}(t) \|.$$

Noting

$$2\int_{\Omega} |u'_{m,r}(t)|^{2} |u_{m,r}(t)| |\partial_{x}u_{m,r}(t)|$$

$$\leq ||u'_{m,r}(t)||_{\infty}^{2} \cdot ||u_{m,r}(t)|| \cdot ||\partial_{x}u_{m,r}(t)||$$

$$\leq K_{1}^{2} C_{1} C_{2} ||u'_{m,r}(t)||^{2} + \frac{K_{1}^{2}}{2} C_{1} C_{2} ||\partial_{x}u'_{m,r}(t)||^{2}$$

and

$$\int_{\Omega} |u_{m,r}(t)|^{2} |\partial_{x}u'_{m,r}(t)| |u'_{m,r}(t)|
\leq ||u_{m,r}(t)|^{2} \cdot ||\partial_{x}u'_{m,r}(t)|| \cdot ||u'_{m,r}(t)||
\leq \frac{K_{1}^{2}}{2} C_{1} \sqrt{C_{1}^{2} + C_{2}^{2}} ||u'_{m,r}(t)||^{2} + \frac{K_{1}^{2}}{2} C_{1} \sqrt{C_{1}^{2} + C_{2}^{2}} ||\partial_{x}u'_{m,r}(t)||^{2},$$

and using Inequality (7), we have

$$\frac{1}{2} \frac{d}{dt} \| u'_{m,r}(t) \|^{2}$$

$$\leq -\frac{a_{1}}{K_{4}^{2}} \| u'_{m,r}(t) \|^{2} + a_{0} \| u'_{m,r}(t) \|^{2} + 3 | \alpha_{2} | \cdot 2C_{1}C_{2} \cdot \| u'_{m,r}(t) \|^{2}$$

$$+ (| \alpha_{3} | + | \alpha_{4} |) \left[\left(K_{1}^{2}C_{1}C_{2} + \frac{K_{1}^{2}}{2}C_{1}\sqrt{C_{1}^{2} + C_{2}^{2}} \right) \| u'_{m,r}(t) \|^{2}$$

$$+ \left(\frac{K_{1}^{2}}{2}C_{1}C_{2} + \frac{K_{1}^{2}}{2}C_{1}\sqrt{C_{1}^{2} + C_{2}^{2}} \right) \| \partial_{x}u'_{m,r}(t) \|^{2}$$

$$+ 5 | \alpha_{5} | \cdot 4C_{1}^{2}C_{2}^{2} \cdot \| u'_{m,r}(t) \|^{2} + N \cdot \| u'_{m,r}(t) \|$$

$$\leq \left\{ N - \left[\frac{a_{1}}{K_{4}^{2}} - (| \alpha_{3} | + | \alpha_{4} |) K_{1}^{2} \left(1 + \frac{1}{K_{4}^{2}} \right) (C_{1}C_{2} + \frac{1}{2}C_{1}\sqrt{C_{1}^{2} + C_{2}^{2}}) \right.$$

$$- a_{0} - 6 | \alpha_{2} | C_{1}C_{2} - 20 | \alpha_{5} | C_{1}^{2}C_{2}^{2} \right\} \| u'_{m,r}(t) \| \cdot \| u'_{m,r}(t) \|$$

Setting

$$C_4=\frac{N}{2},$$

we have

$$||u'_{m,r}(t)|| \leq C_4, \forall t \in [-r, +\infty).$$

This completes the proof of Lemma 4.

Remark 2. Since C_1 and C_2 are independent of a_1 , a_1 can be taken to satisfy Inequality (17).

3 Bounded solution

Theorem 1. Under Assumptions 1 and 2, let a_1 be large enough to satisfy the inequality as follows:

$$a_1 > \max\{\sigma_1, \sigma_2\}.$$

Then Problem (1)-(2) has a strong solution u which satisfies these inequalities as follows:

$$\| u(t) \| \le C_1, \| \partial_x u(t) \| \le C_2, \int_t^{t+1} \| \partial_{xx} u(t) \|^2 \le C_3, \| u'(t) \| \le C_4, \quad (19)$$

where C_1 , C_2 , C_3 and C_4 are given in Lemmas $1 \sim 4$, respectively.

Proof. Using Lemmas $1 \sim 4$, by the standard compactness arguments, we can take an appropriate subsequence which we denote also by $\{u_{m,r}\}$, such that

$$\lim_{r\to+\infty} u_{m,r}(t) = u_m(t) \qquad \text{weakly star in } L^{\infty}(\mathbb{R}^1, H^1_{\text{per}}),$$

$$\lim_{r\to+\infty} u_{m,r}(t) = u_m(t) \qquad \text{strongly in } L^{\infty}_{\text{loc}}(\mathbb{R}^1, L^2_{\text{per}}),$$

$$\lim_{r\to+\infty} u'_{m,r}(t) = u'_m(t) \qquad \text{weakly star in } L^{\infty}(\mathbb{R}^1, L^2_{\text{per}}),$$

$$\lim_{r\to+\infty} \mathscr{B}u_{m,r}(t) = \mathscr{B}u_m(t) \qquad \text{weakly in } L^{\infty}_{\text{loc}}(\mathbb{R}^1, L^2_{\text{per}}),$$

$$\lim_{r\to+\infty} u_{m,r}(t,x) = u_m(t,x) \qquad \text{a.e. in } \Omega \times \mathbb{R}^1,$$

$$\lim_{r\to+\infty} |u_{m,r}(t)|^2 u_{m,r}(t) = |u_m(t)|^2 u_m(t) \qquad \text{weakly in } L^2_{\text{loc}}(\mathbb{R}^1, L^2_{\text{per}}),$$

and

$$\lim_{m\to\infty} |u_{m,r}(t)|^4 u_{m,r}(t) = |u_m(t)|^4 u_m(t) \qquad \text{weakly in } L^2_{loc}(\mathbb{R}^1, L^2_{per}).$$

Thus $u_m(t)$ is the solution of the following equation:

$$(u'_m(t), \phi_j) + (\mathcal{A}u_m(t), \phi_j) = (\mathcal{N}u_m(t), \phi_j) + (f(t), \phi_j),$$

 $j = 1, 2, \dots m,$ (20)

where $u_m(t) = \sum_{j=1}^m \alpha_{m,j}(t) \phi_j$. Besides, those inequalities in (19) are also valid for $u = u_m$.

Similarly, we can again take a subsequence of $\{u_m\}$, which is denoted also by $\{u_m\}$, such that $\lim_{m\to\infty}u_m(t)=u(t)$ weakly star in $L^\infty(\mathbb{R}^1,H^1_{\mathrm{per}})$,

$$\lim_{m \to +\infty} u_m(t) = u(t) \quad \text{strongly in } L^{\infty}_{\text{loc}}(\mathbb{R}^1, L^2_{\text{per}}),$$

$$\lim_{m \to +\infty} u'_m(t) = u'(t) \quad \text{weakly star in } L^{\infty}(\mathbb{R}^1, L^2_{\text{per}}),$$

$$\lim_{m \to +\infty} \mathcal{B}u_m(t) = \mathcal{B}u(t) \quad \text{weakly in } L^2_{\text{loc}}(\mathbb{R}^1, L^2_{\text{per}}),$$

$$\lim_{m \to +\infty} u_m(t, x) = u(t, x) \quad \text{a.e. in } \Omega \times \mathbb{R}^1,$$

$$\lim_{m \to +\infty} |u_m(t)|^2 u_m(t) = |u(t)|^2 u(t) \quad \text{weakly in } L^2_{\text{loc}}(\mathbb{R}^1, L^2_{\text{per}}),$$

and

$$\lim_{n \to \infty} |u_m(t)|^4 u_m(t) = |u(t)|^4 u(t) \qquad \text{weakly in } L^2_{\text{loc}}(\mathbb{R}^1, L^2_{\text{per}}).$$

Besides, u(t) satisfies (20) for $j = 1, 2, 3, \dots$, or

$$u'(t,x) + \mathcal{A}u(t,x) = \mathcal{N}u(t,x) + f(x,t), \quad \text{a.e. on } \mathbb{R}^1 \times \Omega,$$

and those inequalities in (19) are true. Thus u(t) is a required strong solution of Problem (1)-(2). This completes the proof of Theorem 1.

4 Existence of almost periodic solution

In Sec. 3, we obtain a bounded solution u(t) of Problem (1)-(2). We shall prove that this solution has almost periodicity. For this, we need to prepare an inequality about the nonlinear operator \mathcal{N} .

By (20), we have

$$\begin{cases} (u'_{m}(t), \phi_{j}) + (\mathcal{B}u_{m}(t), \phi_{j}) = (\tilde{\mathcal{N}u}_{m}(t), \phi_{j}) + (f(t), \phi_{j}) \\ (u'_{m}(t+\tau), \phi_{j}) + (\mathcal{B}u_{m}(t+\tau), \phi_{j}) = (\tilde{\mathcal{N}u}_{m}(t+\tau), \phi_{j}) + (f(t+\tau), \phi_{j}) \end{cases}$$
(21)

for $j = 1, 2, 3, \dots$ where $\tau \in \mathbb{R}^1$. In the proof below, we need to consider the boundedness of the following term:

$$T = \| \left[\mathcal{N}u_m(t+\tau) - (a_0 - \mu)u_m(t+\tau) \right] - \left[\mathcal{N}u_m(t) - (a_0 - \mu)u_m(t) \right] \|.$$

Since

$$\| | u_{m}(t+\tau) |^{2} u_{m}(t+\tau) - | u_{m}(t) |^{2} u_{m}(t) \|$$

$$\leq (\| u_{m}(t+\tau) \|_{\infty}^{2} + \| u_{m}(t+\tau) \|_{\infty} \cdot \| u_{m}(t) \|_{\infty}$$

$$+ \| u_{m}(t) \|_{\infty}^{2}) \cdot \| u_{m}(t+\tau) - u_{m}(t) \|$$

$$\leq 6C_{1}C_{2}K_{4} \| \partial_{x}(u_{m}(t+\tau) - u_{m}(t)) \| ,$$

$$\| | u_{m}(t+\tau) |^{2}\partial_{x}u_{m}(t+\tau) - | u_{m}(t) |^{2}\partial_{x}u_{m}(t) \|$$

$$\leq \| u_{m}(t+\tau) \|_{\infty}^{2} \cdot \| \partial_{x}(u_{m}(t+\tau) - u_{m}(t)) \|$$

$$\leq \| u_{m}(t+\tau) \|_{\infty}^{2} \cdot \| \partial_{x}(u_{m}(t+\tau) - u_{m}(t)) \|$$

$$+ (\| u_{m}(t+\tau) \|_{\infty} + \| u_{m}(t) \|_{\infty}) \| \partial_{x}u_{m}(t) \| \cdot \| u_{m}(t+\tau) - u_{m}(t) \|_{\infty}$$

$$\leq (C_{1} + \sqrt{2}C_{1}C_{2} + \sqrt{2}C_{1}C_{2}K_{4}) \| \partial_{x}(u_{m}(t+\tau) - u_{m}(t)) \|.$$
(23)

Similarly,

$$\| u_{m}^{2}(t+\tau)\partial_{x}\overline{u}_{m}(t+\tau) - u_{m}^{2}(t)\partial_{x}\overline{u}_{m}(t) \|$$

$$\leq (C_{1} + \sqrt{2}C_{1}C_{2} + \sqrt{2}C_{1}C_{2}K_{4}) \| \partial_{x}(u_{m}(t+\tau) - u_{m}(t)) \|, \qquad (24)$$

$$\| u_{m}(t+\tau) |^{4}u_{m}(t+\tau) - |u_{m}(t)|^{4}u_{m}(t) \|$$

$$\leq (\| u_{m}(t+\tau) \|_{\infty}^{4} + \| u_{m}(t+\tau) \|_{\infty}^{3} \cdot \| u_{m}(t) \|_{\infty} + \| u_{m}(t+\tau) \|_{\infty} \cdot \| u_{m}(t) \|_{\infty}^{3}$$

$$+ \| u_{m}(t+\tau) \|_{\infty}^{2} \cdot \| u_{m}(t) \|_{\infty}^{2} + \| u_{m}(t) \|_{\infty}^{4}) \cdot \| u_{m}(t+\tau) - u_{m}(t) \|$$

$$\leq 20 C_{1}^{2} C_{2}^{2} K_{4} \| \partial_{\tau} (u_{m}(t+\tau) - u_{m}(t)) \|.$$

$$(25)$$

For convenience, set

$$\sigma^{**} = 6C_1C_2K_4 + 2(C_1 + \sqrt{2}C_1C_2 + \sqrt{2}C_1C_2K_4) + 20C_1^2C_2^2.$$

Then

$$T \leq \sigma^{**} \| \partial_x (u_m(t+\tau) - u_m(t)) \|.$$

Now we give the main theorem in this paper as follows.

Theorem 2. Under Assumptions 1 and 2, let a_1 be large enough to satisfy the inequality as follows:

$$a_1 > \max\{\sigma_1, \sigma_2, \sigma_3\},$$

where $\sigma_3 = (a_0 + \sigma^{**}) K_4$. Then Problem (1)-(2) has an L^2 -almost periodic solution.

Proof. Let u(t) be the bounded solution of Problem (1)-(2) given by Theorem 1. One needs to prove that the solution is L^2 -almost periodic. In fact, since $\{u_m(t)\}$ converges uniformly to u(t) on \mathbb{R}^1 , it is sufficient to prove that $u_m(t)$ has almost periodicity for each $m \in \{1,2,3,\cdots\}$. By Assumption 2, f is almost periodic, then for any $\epsilon > 0$ there is a relatively dense set $E \mid \epsilon$, $f \mid$ such that

$$|| f(t+\tau) - f(t) || \leq \varepsilon, \text{ for } \tau \in E\{\varepsilon, f\}.$$
 (26)

From (18), for any $\tau \in E \mid \epsilon, f \mid$, we have

$$\begin{split} & ((u'_m(t+\tau) - u'_m(t)), \phi_j) + (\mathcal{A}(u_m(t+\tau) - u_m(t)), \phi_j) \\ & = (\hat{\mathcal{M}u}_m(t+\tau) - \hat{\mathcal{M}u}_m(t), \phi_j) + (f(t+\tau) - f(t), \phi_j), \end{split}$$

$$j = 1, 2, \cdots, m. \tag{27}$$

Multiplying the jth equation of (20) by $\bar{\alpha}_{m,j}(t+\tau) - \bar{\alpha}_{m,j}(t)$ and summing over j from 1 to m, then taking the real part on both sides of the result yields

$$\frac{1}{2} \frac{d}{dt} \| u_m(t+\tau) - u_m(t) \|^2$$

$$\leq -a_1 \| \partial_x [u_m(t+\tau) - u_m(t)] \|^2 + a_0 \| u_m(t+\tau) - u_m(t) \|^2$$

$$+ T \| u_m(t+\tau) - u_m(t) \| + \| f(t+\tau) - f(t) \| \cdot \| u_m(t+\tau) - u_m(t) \|$$

$$\leq -\frac{a_1}{K_4} \| u_m(t+\tau) - u_m(t) \| \cdot \| \partial_x [u_m(t+\tau) - u_m(t)] \|$$

$$+ a_0 \| u_m(t+\tau) - u_m(t) \| \cdot \| \partial_x [u_m(t+\tau) - u_m(t)] \|$$

$$+ \sigma^{**} \| u_m(t+\tau) - u_m(t) \| \cdot \| \partial_x [u_m(t+\tau) - u_m(t)] \|$$

$$+ \varepsilon \cdot K_4 \| \partial_x [u_m(t+\tau) - u_m(t)] \|$$

$$= \left\{ \varepsilon \cdot K_4 - \left[\frac{a_1}{K_4} - (a_0 + \sigma^{**}) \right] \| u_m(t+\tau) - u_m(t) \| \right\} \cdot \| \partial_x [u_m(t+\tau) - u_m(t)] \|$$

From this, we obtain

$$\| u_m(t+\tau) - u_m(t) \| \leq \frac{K_4}{\frac{a_1}{K_4} - (a_0 + \sigma^{**})} \cdot \varepsilon.$$

Thus $u_m(t)$ is L^2 -almost periodic^[4]. This completes the proof of Theorem 2.

Remark 3. Since σ_3 is independent of a_1 , a_1 can be taken to satisfy the condition in Theorem 2.

References

- 1 Nakao, M. On boundedness, periodicity, and almost periodicity of solutions of some nonlinear parabolic equations. J. Diff. Equas., 1975, 19: 371.
- 2 Duan, J. et al. Global existence theory for a generalized Ginzburg-Landau equation. Nonlinearity, 1992, 5: 1303.
- 3 Moise, I. et al. On the regularity of the global attractor of a weakly damped, forced Korteweg-de Vries equation. Adv. Diff. Equ., 1997, 2: 257.
- 4 Bohr, H. Almost Periodic Functions, New York: Chelsea Publishing Company, 1951.
- 5 Henry, D. Geometric Theory of Semilinear Parabolic Equations, LNM 840, Berlin: Springer-Verlag, 1981.
- 6 Lions, J. L. Quelques Méthodes de Résolution des Problèmes aux Limites Nonlinéaire, Dunod, Paris: Dunod Gauthier-Villars, 1969.
- (A Chinese translation of this book was given by Guo Boling et al. Guangzhou; Zhongshan University Publishing Company, 1992)