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Almost periodic solution of generalized Ginzburg-Landau equation
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Abstract One class of generalized Ginzburg-Landau equation is studied and the existence of almost periodic so-
lution of the equation is proven when f(t,x) is an almost periodic function of time & .
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We consider the Ginzburg-Landau equation as follows:
2 2 2 4
U, = aoU + @, + ap b w i’ +asl uwl®y, + auu'd, + as | uw iy + f,
t > 0’ X 6 Rl, (1)

where ay = a; is a real number, a; = a; + ibj, a; and b; are real numbers, j=1,2,-5. u(t,x) is

a complex value function of ¢ and x . The equation is supplemented with the space-periodicity bound-

ary condition and zero average condition as follows:

u(t,x + L) = u(t,x), YVt ER', Y5 €ER,

~[udx =0,
a

where L is a positive number and 22 = (0, L) CR'. Let f(¢,%) be an almost periodic function of ¢.

(2)

Using the constructive method, we shall prove that Problem (1)-(2) has an almost periodic solution

in time t. For the periodic solution of nonlinear evolution equations, see References [1,5,6]
In this paper, we have the following assumption:
Assumption 1. a,>0> asand -4a,a5> (b; - by)>.

1 Definitions and notations

Let X be a Banach space with the norm || * || x. For simplicity, we denote | | ’(q) by

“i” b “yn

dt

| -1l as p#2 and 2 by |+ Il . In addition, we denote

Definition 1 (abstract almost periodic function). Let u () be a measurable function with

value in a Banach space X. We say u(t) is X-almost periodic if for any € > O there exists a relative-
ly dense set E{¢, u} CR}! such that
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essspp” u(t+r)—u(t)||X$z, VréE{e,u}.
t€ER
Let
L"’,er = {g € 17(2),g(x) be an L-periodic function} ,

where the norm in L?__ is defined just as in [/ (2);

per
H'{,e, = {g € H*(Q2), g(x) be an L-periodic function},
where the norm in H%,, is defined just as in H(Q);
Lip(X) = {g R > X,g(t) € [P(R',X), and g(t) is X-almost periodic} .
Let < *,* > denote the duality relationship between H p'e,l and H ll,e,. We define the linear opera-~
tor J%: H ll,e,—’ H p'erl by the equation

(Av,w) = J (a;9,099% - pviv)dx, Vv,w€ H,.
a

Let p(#) denote the regular set of (.£). We choose x adequately such that 0€ p.4%. Set

N = (ag-p)b+arl 1%+ ayt 3178, + ay8’b, + a5 | B 1%, VECH,,.
Then .#"is locally Lipschitz continuous, i.e. Y v,w€ Hi,e, , 3 C >0, such that

o) = Mw)ll < Cllv-wl g,

where the Lipschitz constant C depends continuously on | v || zt and [l w || 4.

Assumption 2.  f(1,x)€ L5(L%,) , and f',(2,%) € L (HL)) .

Let

M = esssup |l f(¢,2) I, N = esssup ||l f',(£,%) || .

€ER t€R

Using these notations, Problem (1)-(2) can be written formally in the form
' (t) + Au(t) = Sa(t) + f(¢, +), forany ¢, u(t) € HL . (3)

Definition 2  (strong solution) . u(t,x) is said to be a strong solution of Problem (1)-(2) if
the following conditions are satisfied:

(1) ()€ L (R, H,),

loe per

(ll) -/gu(t) 6 leuc(IR1 7L§er) b4

(i) ' ()€ L2 (R, L12,),

(iv) u' (t,2) + Au(t,x) =Ae(t,x) + f(t,x), a.e. on Rl x 2.
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The following inequalities will be used in the proofs later.

(i) Agmon’s inequality :

el e <K/ Clull?2e Tu 1270 ul?, (4)
where K, is a constant depending only on L.
(ii) Gagliardo-Nirenberg inequality for I7 and H* spaces:
lull, <KG kL) lul fllulll?t =63 -k)s-0)- L.
p 2 q
Specially, there exist positive constant numbers K, and K, depending only on L such that
lullg<Blul?+ laul®?ull? (5)
and
(6)

lullfo<K(Hull>+ la,ull®lul?.

(iii) Holder’s inequality:

L
[Cigran<isi,ial,

and Young’s inequality
AB s A*/p + Bi/q,
where A and B are non-negative real numbers, 1< p < ® and 1/p + 1/¢ =1 . In Hslder’s in-

equality, one may take p=1,qg=®,
(iv) For k=1, we have

lulle <vZHuliloul Vu€h, | u()ds=o0.

Especially, there exists a positive constant number K, depending only on L such that

(7

lull sk llaull.

2 A Priori estimates
In this and the next section, we shall construct a bounded solution of Problem (1)-(2) by

Galerkin’s method and give a priori estimates for this solution.
Let { ¢j} be the basis of H :m consisting of the eigenfunctions of .#, and consider the system of

ordinary differential equations

(up, (1),8) + (ABu,, (£),8) = (S, (£),8) + (f,9),
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j=1,2,m (8)
with
um,r('— T) = 0, (9)

where r€R*, u,, , = E;laml,,j(t)‘ﬁj and am,,,j(t)(j =1,2,*m) are undetermined func-
tions. Since (f(¢),$;) is continuous in ¢ and (A, (t),9;) is Lipschitz continuous in (a,,,,;,
@m.r2s " Am.r.m) > System (8)-(9) has a unique solution (@, , 15 @p, ;20" Ap,rim)s 1.6 Uy,
(t), on some interval [ - r,¢,]. By the theory of ordinary differential equation, we can obtain glob-
al existence in [ - r, + ® ) when || u, , | and [ TR | are uniformly bounded. Besides, a
priori estimates in || u,, , |l , || 9,4, |l and || ', , | can ensure that {u, ,| has a convergent
subsequence and one can prove that the limit of the convergent subsequence of {u,, ,} is the solution

needed. Now, let us give a priori estimates in || u,, , || and || 9,u, |l .

Lemma 1. Under Assumptions 1 and 2, let a, be large enough to satisfy the inequality as fol-
lows:

(by = by)°
2](15[ '

a, >
Then there exists a positive constant C, depending only on a4, a;,a3,a4,as, L and f such that

llum,r”scly vtE[_ry'l'w)-

Proof. Multiplying the jth equation of (8) by a,, , ;, summing over j from 1 to m, and tak-
ing the real part on both sides of the result, we have

1 d
(D12 g ] (D17 = a1 ] D0 () 17 4 0o 1wy, () 10
t o)
+ asfn | u,,,(t) 1%dx + Re[((a;3 + a;) - i(by - by))

V(0 P (0008 (DT LS g (]

By Ref. [2] and the assumption about a,, we can choose constants A, = +/ las| and A, =

(bs-b)* . o, 2
e which satisfy A7A3 = (b3 — b,)* such that
5

a =2a1—A§>0,,3=—(2(15+A%) > 0,
and the following inequality is true (see Inequality (29) in Ref. [2]):

d

A RO R PR OOF LR R OO Y -y PN ON F
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1
s oL L lsIE, (10)

where C' =272 1 ao 1¥%/(3¥28'%) + 2" 1 a, 13/(278%) + 2/(38"%). Let C, =2C'L + M*. By

Gronwall inequality, we have
| up, () I2<C;, YeE[-7r, + o).
This completes the proof of Lemma 1.

Lemma 2. Under Assumptions 1 and 2, let a; be large enough to satisfy the inequality as fol-

lows:
* (b3 - b4)2}
o > max{o” (11)
byl
where ¢ * =%C1K§ + (lasl + lagl) K2C?+ las| C1K3 + 2C,. Then there exists a positive

constant C, depending only on ag,a,,a3,a4,25,L, and f such that
” 3xum,,(t) || $C2, Vt 6[_ r, + w)_

Proof. Let A; be the eigenvalue of the operator % and 4¢, = A$;, j =1,2,3,-*. Multiply-
ing the jth equation of (8) by A ; and summing over j from 1 to m, then taking the real part on both

sides of the result, we have

';_ad_t l axu,,,,,(t) 2< - a I 3,,,,u,,,,,(t) 2 +1 ag | | um,r(t) - | axxum,r(t) I
+lagl Ny CONZe 10,5, ()l + (1asl
+1 ag |)Jﬂ () 113y, () 113 u,, (2)] (12)
tlas b | oum, (2) 130 1 3uum (O + IFN - 113,00, ().

, we have the following inequalities:

x|

By (4) ~ (6) and the inequality || », | >< || u u

1
—a 9 u,  (D)*<s - a; - o |9, ()12 1 2,u,, (). (13)
1

lag |l |t () I3 1000, ()] <1 ayt KECI(CT+ 19,0, () 1)1 90, (2) |

=

31yt K(CE+ €D 1 9, (1) | (14)
g el K0 ()12 0, () .

(lag 1+ a4 |)jn | wp, (8) 12430, ,(2) 11 3,u, (t)
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S(Vag i+l ag Dl uy, ()% 1o, (N« {90, ()]

< ay I+t ag DKIC(CE + 19,0 () 12 Houp ()1 - [ 9,u,,,(2)

2 3
<(las I+l agl) K‘ZCI 18 bt (2) |l \ (15)

+(Tag 1+l ag DKC 13, () 1%+ [ 9y, (),
bas |l wp, (&) W30 1 80un ()N + I FI - 119, ,(e) ]
< las | 3CHCE+ [ 3,u, () 1) 19,,u,,,() ]
<as | K3C 1 90t () | +1 a5t K3CT N0,y () 1%+ N30, (&) | . (16)
Hence, Inequality (12) yields

K:c?
%(—%Haxum,,(t)HzS{[M+l g | Cl+%la2IK%(C%+ CH + (lasl+1agl) 121

11
al-—C—1-7|a2|K%-(|a3|

+1 as | Kgc?] -

+1ag DKC, -1 as | K§c§] I 9,y ,(t) | 2} s 9 ()

Taking

Cz=\/M+Ia0l Cl+%la2|K§(Cf+ CH) + (lay1+1 ag 1DKICY +1 as | K°C/°,
we have
I3, ()] <Cpve €0-r, + »).
This completes the proof of Lemma 2.

Remark 1. Since C, is independent of a;, a, can be taken to satisfy Inequality (10). Set

. (by - b4)2}.

crl:max{c 21 a |
5

Lemma 3. Under Assumptions 1 and 2, let a; be large enough such that a; > 5,. Then there

exists a positive const ant C; depending only on @y, a;, a,, @3, a4, as, L,and f such that
t+1
[N omt (< Cor WEEL-r, 4w,
3

Proof. Let A; be the eigenvalue of the operator % and .49, = A$;, j=1,2,3, . Multiply-
ing the jth equation of (8) by A ;» summing over j from 1 to m, and taking the real part on both sides
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of the result, we have

d
7 1 9attn (O 112+ 0y | B (2) 112

(S

2
= a0l 2, (0 12 4 Re{ | [ (D00, (D) 420wy, 120,0,,,7])
- Re( a3jn I uy,,,(t) Izaxum,,(t)auﬁm,,(t))
+ Re( a4Jn | 9,u, ,(t) Izu,,,,,(t)axﬁ,,,,,(t)) + 3asjn 4y, (t) 14 du, (t) |2

+ 2Re( a5jn | u?, ()| u%,m(t)axﬁ%",,(t)) + Re(f,9,u, ,(8)).

By Agmom’s inequality, Gagliarde-Nirenberg inequalitym , and Lemmas 1 and 2, we have the fol-

lowing inequalities :

| Re(f,9 tt,, () |

<claun, (D17 + L1712, Re( azfﬂ[u%,,,,(t)(axﬁm,,(t))z $ 20U, |2(axum,,)2]) l

1
<31 ay | Hup, (0) 1% 113, () 1> <31 ay | K3C,C3(CF + CD)2,
I_ Re( a3J‘ l uM,r(t) |zazum,r(t)axxﬁm:’(t)) ‘
0
< layl I wn, (D) 1% o, ()« 1940, (e)

1
<e |l 9u,,, () 17+ LS IPKICECE(Cy + Cy)?,

Re( a‘Jn | 3, ,(t) Izum,,(t)axﬁm,,(t)) ‘

< tagl 10, ()2 ., (D S 1asl KCC(C+ |19,u,,, () 1)V

1
<e || 9 u,,, (£) 112+ 2 | e 12K C3Ch + C3,

s a0 20,0
n

<3las! flu, ()% 19,4, ,(e)II*<31as| KICIC3(C} + C3).

Similarly,
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‘ZRe( as| 1w () |2u2,,,,(t>a,u2m,,(t))‘ <21 a5 KC2CA(C + CD).
a
Choosing e small enough, there exists a positive constant D * such that

d 2 a2, 2 *
< Sla <
L0 (D124 21, (0 12 <D,

2|

where D™ depends only on agy, a,, a, a3, a4, as, L, and f. Leiting

2D* + C?

we have
t+1
J‘ ”axzum,r(t)”2$C3, Vte[—r,+ao).

This completes the proof of Lemma 3.
Lemma 4. Under Assumptions 1 and 2, let a; be large enough such that
a, > max{o;,0,}, (17)

where
1
o, = (1 az | +]1 a4|)K%K§(1+P)(C?+ c3)
4

+ aoKk? +61 a, | K3C,C, +201 a5 | K2C2CY + 2K2.

Then there exists a positive constant C, depending only on «y, @;, aj,a3, a4, as,L, and f such
that

W, () <Ci, VEE[-7, + »).
Proof. From (8), we have
(up,,(2),9) + (Aul,, (2),8) = ([A(u,,, )], 8) +{fi,$),j=1,2,m. (18)

Multiplying the jth equation of (18) by aj, , ;(¢), summing over j from 1 to m, and taking the real
part on both sides of the result, we have

1 d
% | wp ()2 <s-alldu, (D) I%+allu (D12 +31ay!l | u,, ()%

w12 (g 141 ag 1) - [2[n Ll () 121 uy () |

13, (1) |+jn L, () 12120, (2) 11 ul, (1) |
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+50as | Hu, (O % s Hun N2 LAl u,, ().
Noting
2j L u'y,, (8) 12wy, (2) 11 3,0, ,(2) ]
7]
s, (O0% Hu,, (DI - 13,u,,()]
K2

<KiC,Cllu,, ()12 + 7101 Collau, (¢)?

and

Jr) lwy,(8) 121 3,ul, (2) 11 up, ()]
< lu, ()% 13,0, ()l 1w, (o)l

K? K?
< 7101 €+ ¢l ()24 7‘61 v+ 3l ()2,

and using Inequality (7), we have
__1_ i ' 2
AEMOL

< - Al (O 12+ agluh (D12 +31a1-2€6,6,+ Il uby, ()11
K

K2
+ (lasl+la, l)[(K%clc2 + 7101 N c§) I up, ()12
K% K% 2 2 3 u ||2
S TR SRV S I3, ()
+51as1+4C3C - luy (D12 + N+ llu, (o)
1 1

s{fv_ [a—‘z —(lagl+lagl) K%(l + —2)(6162 +=C,4/C}+ C%)

K2 K? 2
—ay-61layl C;Cy—201 as | C%cé] I up, ) 1w N wp,,, (o)l }

Setting

)
P
I
D=

we have
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lup () <€y VeE€[-7, + ®).
This completes the proof of Lemma 4.

Remark 2. Since C, and C, are independent of @,, a, can be taken to satisfy Inequality

(17).
3 Bounded solution

Theorem 1. Under Assumptions 1 and 2, let a, be large enough to satisfy the inequality as

follows :
a, > maxialaaZI-

Then Problem (1)-(2) has a strong solution u which satisfies these inequalities as follows:
t+1

luCe)ll <Cy, 9,ue) | $Cz,j | 2,u()I?2sCy, | /(o) | <C,, (19)

t

where C,, C,, C5 and C, are given in Lemmas 1 ~ 4, respectively.

Proof. Using Lemmas 1 ~ 4, by the standard compactness arguments, we can take an appro-

priate subsequence which we denote also by {u,, ,}, such that
limu,, ,(t) = u,(t) weakly star in L (R', H},,),

limu, (t) = u,(t) strongly in L= (R!, L2 ),

er
e+ ® P

limu', (t) = u,(t) weakly star in L= (R', L),

4@

lim Au, (t) = Au,(t) weakly in LSC(RI,LIZM),

r4+ @

limu, ,(t,%) = u,(t,x) a.e. in Q xR,

4@

lim | u,, (¢) 1%y, () =1 u,(t) 1*u,(t)  weakly in L} (R',L%)),

PR per
and

lim | wp,, (8) Pug, (£) =1 u,() 1*u,(2)  weakly in L3 (R', L2,).

4o

Thus u,,(t) is the solution of the following equation:
(1) 18) + (Aun(1),8) = (Hin(1), 8) + (F(1),4),
j=12,m, (20)
where u, (1) = 2 a, ;(1)$;. Besides, those inequalities in (19) are also valid for u = u,, .

Similarly, we can again take a subsequence of {u,, | , which is denoted also by { u, }, such that
lim u,(t) = u(t) weakly star in L” (R', H,.),
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limu, (t) = u(z) strongly in L (R', L2,),

m+ ®

lim w',(t) = ' (t) weakly star in L”(RI,L‘Z,C,),
lim Au,(t) = Au(t)  weakly in L3 (B!, L2,),

m+®

lim u,(t,x) = u(t,x) a.e. in 2 x R',

m>+®

lim | u,(t) 12w, ()

m—+®

I u(e) 12u(e) weakly in LIZOC(R’,L%,C,),

and

lim | ow,(t) 1%u,(t)

m—+®

Besides, u(t) satisfies (20) for j=1,2,3,", or

buCe) 1Yu(e) weakly in L%OC(RI,Lf,er).

uw (t,2) + Au(t,x) = Su(t,x) + f(x,t), a.e.onR x 2,

and those inequalities in (19) are true. Thus u(¢t) is a required strong solution of Problem (1)-(2).
This completes the proof of Theorem 1.

4 Existence of almost periodic solution

In Sec. 3, we obtain a bounded solution u(¢) of Problem (1)-(2). We shall prove that this
solution has almost periodicity. For this, we need to prepare an inequality about the nonlinear opera-

tor A7
By (20), we have
(u, (1), 8) + (Au,(1),8) = (S4,(2),8) + (f(2),9)
Cup(t + )5 $) + (Au,(t + 1), 8) = (S2,(t + 7),8) + (f(t + 7),8)

(21)

for j=1,2,3, where ¢ € R'. In the proof below, we need to consider the boundedness of the fol-

lowing term:
T = || [Sa,(t + 1) = (ag - @un(t + )] = [A0,(t) = (ag - p)u ()]
Since
I 1 unCt o+ o) 1Pup(t + ) =1 up(e) 1Pu, () |l
S(lugCt+ N2+ luG+r ) lae lu ()l
+ P a2y s Hup(e + 7)) ~ u, (o)
<6C,CK, [ 9,(up(t + 7) = u, ) I, (22)
11w (e o+ 7) 120, (0 + 7) =1 u,(2) 123,u, () |

S lu, (e + o) 11% - 19, (u,(t+ 1) = u,(2)) |
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(M uaCe+ e+ a1 ) 120, () I+ T un(e + 2) - up(e) |l &
<(C, +42C,C, +42C CK) 110, (up(t + 7) = u, () I} (23)
Similarly,
| w2 (e + )3, (t + 1) - u ()33, ()|
<(C, +42C,C, +42C,CK) 13, (up(t + ) - u, ), (24)

Il unC e+ o) Fun(e+ 7)) =t u, () 1u,(e) |l
SO upCer ) lh + luaCer o)l Nua(e) e+ lu,Cer o) llas u, ()%
tlu, e )% s Hua () 1%+ Hu, () H%) - Fu, (e 4 2) - u,(2) |l
<20C3C3K, 1 9 (u, (b + 7)) = u, (e 1. (25)
For convenience, set
6 = 6C,C,K, +2(Cy +42C,C, +42C,C,K,) + 20C3CE.
Then
T<o™ 13, (u (2 + 7)) - u, D).

Now we give the main theorem in this paper as follows.

Theorem 2.  Under Assumptions 1 and 2, let a; be large enough to satisfy the inequality as

follows :
a; > max{dladz;dg} »
where o5 = (ag+ 0" )K,. Then Problem (1)-(2) has an L>-almost periodic solution .

Proof. Let u(t) be the bounded solution of Problem (1)-(2) given by Theorem 1. One
needs to prove that the solution is L*-almost periodic. In fact, since {u,(t)} converges uniformly to
u(t) on B', it is sufficient to prove that u, (¢) has almost periodicity for each m € {1,2,3,++1.
By Assumption 2, f is almost periodic, then for any € > 0 there is a relatively dense set E{e ,f]
such that

I fCe+ ) - () | <e, for z €Ele,fl. (26)
From (18), for any € Ele ,f}, we have
(CunCt + ) = un(2)),9) + (Alu, (¢ + ) - u,(2)),9)
= (Wi (1 + 1) = Hin(0),8) + (F(1 4 2) - (1,8,
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j=1,2,,m. (27)

Multiplying the jth equation of (20) by &m,j( t+ 1)~ &,,w-(t) and summing over j from 1 to m,
then taking the real part on both sides of the result yields

LT ROIE

< - a3, lup(t+7) - u, (DN + agll up,(t +7) = u,(2) |2

+ THu, (e + )= u () + fCe+ )= fCONl » u,(e+ )= u, ()
< -%u un(t+ ) = un() |l 13 Lunlt+7) - up(e)] ]

+agll up(t +7) = un ()« 13, [un(t + ) - u, ()]l
+ 0" lup(t+2) = uu () - I3, lun(e+7) - u, ()]l

+e K19, lu,(t +7) = u, ()]

{K 2 (ayrom )] um<t+f>-um<t>u}- 19, Tu, (e + ) = u, ()]

From this, we obtain

lun(t + 1) = u,(2) ] < - K, ‘e,

_1_ *%
K4 (a0+0' )

Thus u,(¢) is L>-almost periodic'*'. This completes the proof of Theorem 2.

Remark 3. Since o3 is independent of a;, a; can be taken to satisfy the condition in Theorem

2.
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